Measurement of the Leptonic CP Violation Phase With a New Parameterization Using T2K Neutrino Oscillation Data

X. Y. Zhao, on behalf of the T2K Collaboration

Eidgenössische Technische Hochschule Zürich (ETHZ), 8046 Zürich, Schweiz

ETH zürich

1 The T2K experiment

The T2K experiment is a long baseline neutrino oscillation experiment in which a muon neutrino or anti-neutrino beam is directed over a 295 km baseline from the J-PARC facility to the Super-Kamiokande (SK) detector.

The configuration allows neutrino oscillation to be studied in two channels: disappearance of ν_{μ} ($\overline{\nu}_{\mu}$) and appearance of ν_{e} ($\overline{\nu}_{e}$).

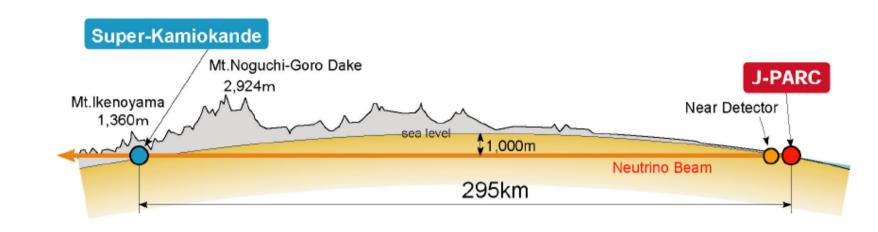


Figure 1: A schematic view of the T2K experiment.

The analysis includes 5 different types of events observed at SK: (1) $CC1R_{\mu}$ (single muon), (2) $CC1R_e$ (single electron) and (3) $CC1R_e1\pi^+$ (single electron single pion, where pion is detected as a Michel electron) samples in FHC (neutrino) mode and (4) $CC1R_{\mu}$ and (5) $CC1R_e$ samples in RHC (anti-neutrino) mode.

2 Motivations of the new parameterization

The new parameterization regards $\sin \delta_{CP}$ and $\cos \delta_{CP}$ as two independent parameters:

• The oscillation probabilities are more sensitive to $\sin \delta_{CP}$ and $\cos \delta_{CP}$ instead of δ_{CP} [1]:

$$P(\stackrel{(-)}{\nu}_{\mu} \to \stackrel{(-)}{\nu}_{e}) = A_{\mu e} \cos \delta_{CP} + (-)B_{\mu e} \sin \delta_{CP} + C_{\mu e}(C'_{\mu e}). \tag{1}$$

- Around the neutrino energy 0.6 GeV, which is the oscillation maximum for the T2K experiment, the contribution from $\cos \delta_{CP}$ term is much smaller than $\sin \delta_{CP}$ term. (Figure 2 left)
- The $\sin \delta_{CP}$ term contributes to the CP violation and determines the "strength" (extension along the long axis of the ellipses, Figure 2 right) of the violation.
- The $\cos \delta_{CP}$ term contributes to the spectral distortion (width along the short axis of the ellipses, Figure 2 right).

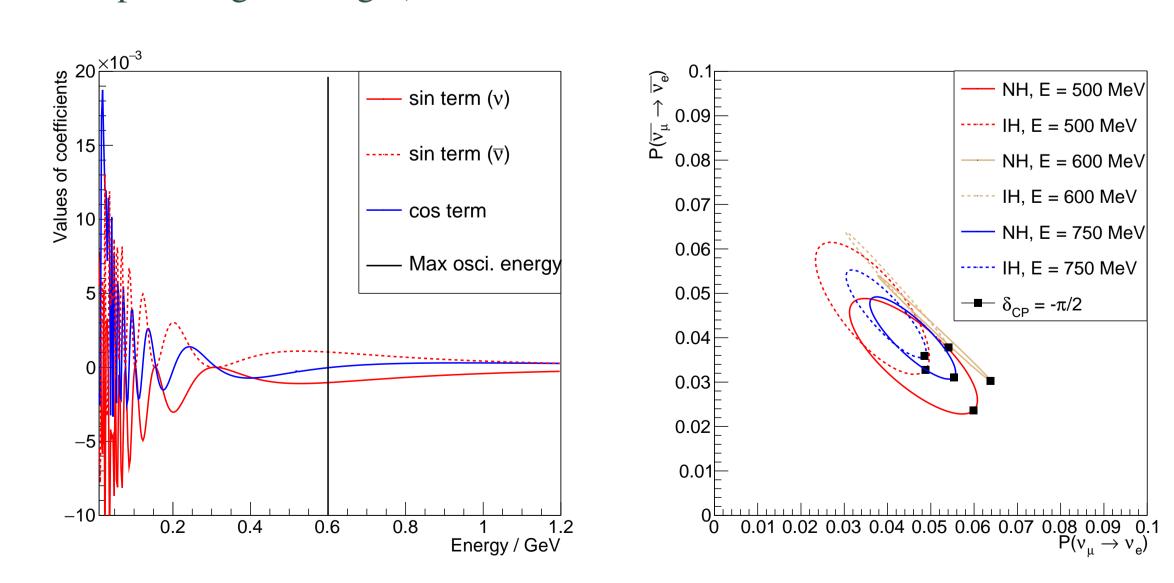


Figure 2: Left: Coefficients of $\sin \delta_{CP}$ and $\cos \delta_{CP}$ in Eqn. (1) as a function of neutrino energy. Right: Effects of $\sin \delta_{CP}$ and $\cos \delta_{CP}$ terms in $P(\overline{\nu}_{\mu} \to \overline{\nu}_{e}) - P(\nu_{\mu} \to \nu_{e})$ bi-probability space

3 Modifications to the oscillation probabilities

Write $\sin \delta_{CP}$ and $\cos \delta_{CP}$ as X_S and X_C for convenience.

• First introduce two polar coordinates ρ and δ (not δ_{CP}), which are related to X_S and X_C through Cartesian polar transformations:

$$\rho(X_S, X_C) = \sqrt{X_S^2 + X_C^2}, \ \delta(X_S, X_C) = \begin{cases} \arctan \frac{X_S}{X_C}, & \text{if } X_C \ge 0\\ \arctan \frac{X_S}{X_C} + \pi, & \text{if } X_C < 0 \text{ and } X_S > 0\\ \arctan \frac{X_S}{X_C} - \pi, & \text{if } X_C < 0 \text{ and } X_S \le 0 \end{cases}$$

$$(2)$$

• Then the oscillation probabilities $P_{\alpha\beta}(\delta_{CP}, \vec{\theta})$ are modified as a linear combination form:

$$P'_{\alpha\beta}(X_S, X_C, \vec{\theta}) = \frac{1 + \rho(X_S, X_C)}{2} P_{\alpha\beta}(\delta(X_S, X_C), \vec{\theta}) + \frac{1 - \rho(X_S, X_C)}{2} P_{\alpha\beta}(\delta(X_S, X_C) + \pi, \vec{\theta}).$$
(3)

4 Analysis Strategy

The analysis performs a simultaneous fit of the near detector (ND280) and SK data using a Bayesian MCMC technique. We use the Bayesian posterior density:

$$-\log P(\vec{\Theta}|D) = \sum_{i} \left[N_i^p(\vec{\Theta}) - N_i^d + N_i^d \log \left(N_i^d / N_i^p(\vec{\Theta}) \right) \right]$$

$$+ \frac{1}{2} \sum_{j} \Delta \vec{\Theta}_j^T V_j^{-1} \Delta \vec{\Theta}_j + \lambda \left(\sqrt{X_S^2 + X_C^2} - 1 \right)^2.$$

$$(4)$$

- First term: The data in each ND280 and SK sample are binned and compared.
- Second term: The parameters with Gaussian priors are summed over.
- Last term: A physical constraint is added on X_S and X_C , where λ determines the strength of the constraint. During the fit, two constraint cases are considered:
- Weak ($\lambda = 0.2$), where non-standard PMNS phenomenon is expected to be shown.
- -Strong ($\lambda = 2$), where standard PMNS model is approximated.
- → Through comparing the fit results from these two models, we want to see whether the current T2K data has any preference on each model.

5 Fit results and conclusions

Constraint	X_S	X_C
Weak ($\lambda = 0.2$)	$-1.69^{+0.32}_{-1.07}$	$-1.89^{+3.86}_{-1.12}$
Strong ($\lambda = 2$)	$-1.30^{+0.43}_{-0.49}$	$-0.55^{+1.10}_{-0.62}$
Official T2K run 1-9 fit (best-fit $\delta_{CP} = -1.74$)	-0.99	-0.17

• The 68% credible intervals of the best-fit values from the strong constraint model cover the results from T2K official fit [2]. → The strong constraint model is indeed an approximation to the standard PMNS model.

• In the weak constraint model the best-fit values deviate far from the unitarity circle $X_S^2 + X_C^2 = 1$, but the 90% credible interval still has intersections with that circle, which means some physical δ_{CP} values are still included with 90% credible level. (Figure 3 left)

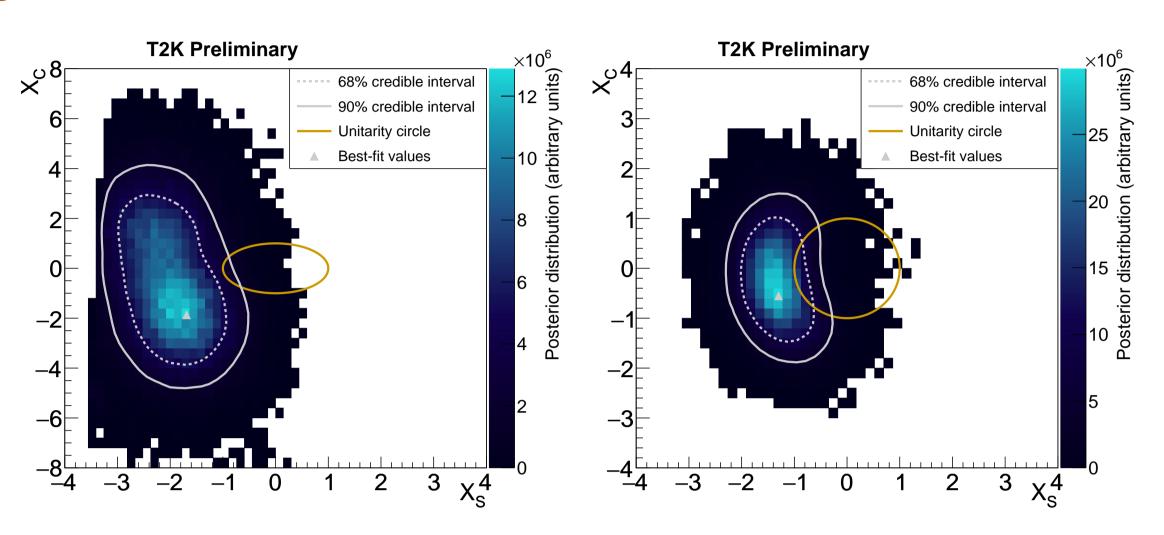


Figure 3: The fit results in X_S - X_C parameter space, with weak (left) and strong (right) constraint.

• Bi-probability plot and bi-rate plot can be used to further compare two models. In bi-rate plot the axis is the number of events instead of oscillation probability.

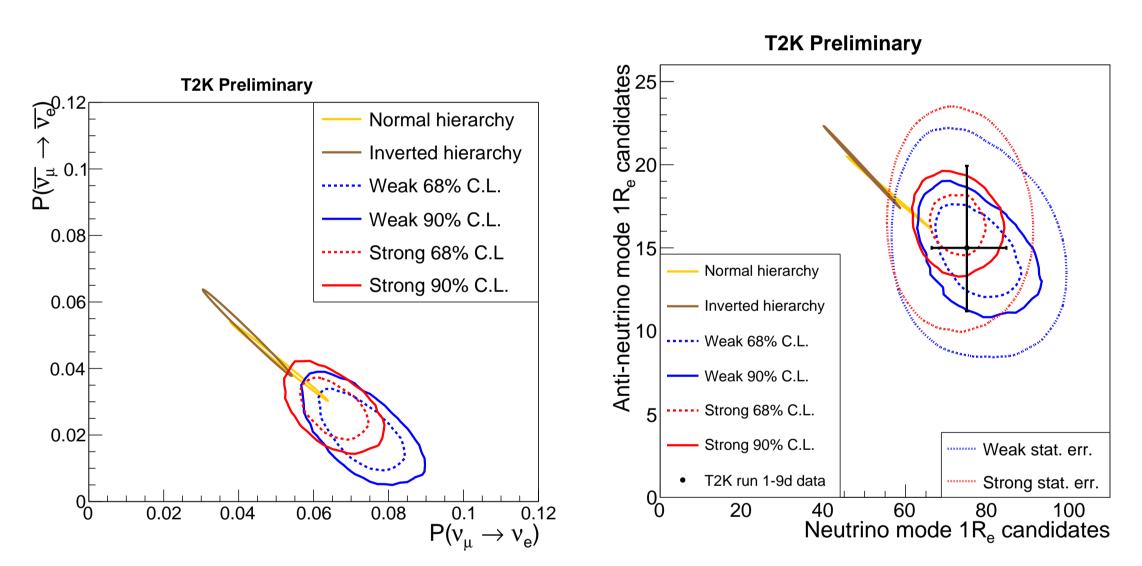


Figure 4: The fit results in bi-probability plot (left) and bi-rate plot (right).

The contours from weak and strong constraint models significantly overlap in both 68% and 90% credible levels. \rightarrow A good agreement between the two fits from each model, showing consistency between current T2K data and the standard PMNS model.

References

- [1] H. Yokomakura, K.Kimura and A. Takamura, *Phys. Lett. B* **544**, 286-294 (2002).
- [2] K. Abe *et al.* (T2K Collaboration), arXiv:1910.03887.
- [3] K. Abe et al. (T2K Collaboration), arXiv:1911.07283.

Acknowledgements

I would like to thank Phill Litchfield, who brought this reparameterization framework into my attention. I am also very grateful to people in T2K MaCh3 group for their help concerning the technical aspects of the MaCh3 software.